Name Date

Answer questions 1-10 using the following series circuit.

- 1. Total resistance = 12Λ
- 2. Total current = ZA
- 3. Current at $R_I = 2A$
- 4. Current at $R_3 = \underline{ZA}$
- 5. Voltage drop at $R_1 = 12 \text{V}$
- 6. Voltage drop at $R_2 = 4v$
- 7. Voltage drop at $R_3 = 8 \nu$
- 8. Total power consumed by the circuit = 48ω
- 9. Power consumed at $R_1 = 24 \omega$
- 10. Power consumed at $R_2 = 8 \omega$

Answer questions 11-20 using the following circuit.

- 11. Source voltage = 10 V
- 12. Total circuit resistance = 250 N
- 13. Current at $R_I = .04A$
- 14. Current at $R_3 = .04A$
- 15. Resistance of $R_1 = 120 \text{ M}$
- 16. Resistance of $R_2 = 70 \,\text{M}$
- 17. Resistance of $R_3 = 60$ A
- 18. Total power consumed by the circuit = $.4\omega$
- 19. Power consumed at $R_1 = .../9\omega$
- 20. Power consumed at $R_2 = \frac{\cdot //\omega}{\omega}$

ver questions 21-30 using the following s circuit.

Voltage for $E_I = 12V$ Total circuit resistance = 12 \checkmark Current at $R_I = \underline{ZA}$ Resistance of $R_1 = 6 \Lambda$ Current at $R_2 = ZA$ Resistance of $R_2 = 2x$ Current at $R_3 = 2A$ Resistance of $R_3 = 4 \mathcal{N}$

Total power consumed by the circuit = $\frac{98\omega}{}$

Power consumed at $R_I = 24\omega$

Answer questions 31-40 using the following series circuit. ANSWER KEY

- 31. Total circuit current = .o4A
- 32. Current at $R_1 = .04$ A
- 34. Current at $R_2 = \frac{.644}{}$
- 35. Resistance of $R_2 = 70 \text{ M}$ 36. Voltage drop at $R_2 = 2.8 \checkmark$
- 37. Current at $R_3 = ...044$ 38. Voltage drop at $R_3 = 2.4 \text{ V}$
- 39. Total power consumed by the circuit = $.4\omega$
- 40. Power consumed at $R_I = 1/92\omega$