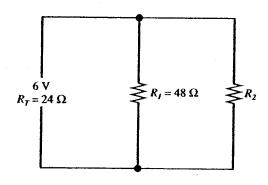

Name _____

Date

ll in the blanks based on the information proled in the schematics. Use the space beside the hematics for your calculations. By applying the ws of parallel circuits, you will be able to oid complicated calculations.

estions 1-6 refer to the schematic above.


Voltage drop at $R_1 =$

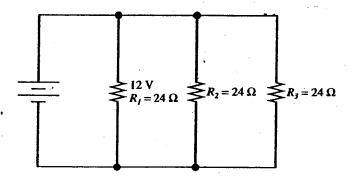
Voltage drop at $R_2 =$ _____ Current through $R_I =$ _____

Current through $R_2 =$ _____

Total circuit current = ____

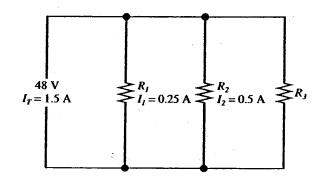
Total circuit resistance = ____

estions 7–14 refer to the schematic above.


Voltage drop at $R_I =$

Voltage drop at $R_2 =$ ____

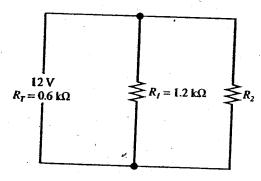
Current through $R_I =$ _____


Resistance value of $R_2 =$ ____

- 11. Current through $R_2 =$ _
- 12. Total circuit current = ____
- 13. Total circuit wattage = ____
- 14. Wattage consumed at $R_1 =$ ___

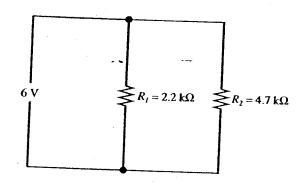
Questions 15-20 refer to the schematic above.

- 15. The current through $R_1 =$
- 16. The voltage drop across $R_2 =$
- 17. The voltage at the source = ____
- 18. The current through $R_3 =$ _____
- 19. Total circuit current = ____
- 20. Total circuit resistance = ____


Questions 21–25 refer to the schematic above.

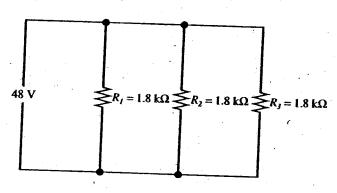
- 21. Total circuit resistance =
- ·22. Voltage drop at $R_I =$
- 23. Voltage drop at $R_3 =$
- 24. Current value at $R_3 =$
- 25. Resistance value of $R_3 =$

Name _____

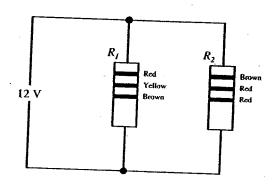

Date

This practice session uses more realistic circuit values. Fill in the blanks based on the information provided in the schematics. Use the space beside the schematics for your calculations. By applying the laws of parallel circuits, you will be able to avoid complicated calculations.

Questions 1-6 refer to the schematic above.


- 1. Voltage drop at $R_1 =$
- 2. Voltage drop at $R_2 =$
- 3. Current through $R_I =$
- 4. Total circuit current = ____
- 5. Current through $R_2 =$
- 6. Resistance value of $R_2 =$

uestions 7-14 refer to the schematic above.


- Voltage drop at $R_I =$ _____
- Voltage drop at $R_2 =$ _____
- Current through $R_I =$
- . Current through $R_2 =$

- 11. Total circuit current = ____
- 12. Total circuit resistance = ____
- 13. Total circuit wattage = ____
- 14. Wattage consumed at $R_I =$ _____

Questions 15-21 refer to the schematic above.

- 15. Voltage across $R_2 =$
- 16. Current through $R_I =$
- 17. Current through $R_2 =$ _____
- 18. Current through $R_3 =$
- 19. Total circuit current = ____
- 20. Total circuit resistance = ____
- 21. Total circuit wattage = ____

Questions 22-26 refer to the schematic above.

- 22. Total circuit resistance = ____
- 23. Voltage drop at $R_I =$ ____
- 24. Voltage drop at $R_2 =$
- 25. Current value at $R_1 =$
- 26. Current value of $R_2 =$